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METHOD6 02 SOLUTION: 

In accordance with the research proposal, two specific pilot problems 
have been investigated, one illustrating the application of a variational princi- 

ple to a so-called nonconservative system and the other demonstrating an 
inherent weakness of the Galerkin procedure when it is applied to the solution 

of differential equations in a purely mathematical sense. 

To illustrate that a variational f o r m u l a t i v f  a so-called nonconser- 
vative-system problem can be carried out, the classical problem of the 
follower-force column-buckling problem (See Fig, 1) is undertaken. The clas- 

sical solution, found by differential-equation solution, is given by Bolotin in 

Reference 1. 
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Consider the functional I 

where 
E1 = Uniform-beam bending stiffness 
w = Lateral deflection 

= 
k, = 
p = Follower force 

M a s s  density of end mass 

Natural frequency of vibration of beam 

px,fz=Axial and lateral components, respectively,of 
follower force 

and the mass density of the beam itself has been neglected. 

respect to w ,the folkwing Euler equations and natural boundary conditions 
result: 

With Prandf2held constant during the first variation of f with 

But for small oscillations 
d N  &"P, pz" P(z )x& 

Thus, in final form, the results are: 
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The above equations , stemming from application of the indirect 

method of the calculus of variations to the assumed functional F ,lead to the 

governing equations and boundary conditions given by Bolotin. 

With confidence established in the functional €,the direct method of 
the calculus of variations is employed to seek the critical value of P . The 
geometric constraints are sazsfied with 

Insertion of \ES into 

with respect to ah while fx and p2are held constant leads to a condition 
for ensuring the existence of the lateral-deflection amplitudes at buckling, 
namely , 

w =  cqR[\-cosK nar] 
bU 

,integration of the results , and subsequent variation 

where 
Y 00 

and 

From the characteristic equation, it is easily shown that the fre- 
quency grows without bound when 

The lowest nontrivial rodt of this equation is 

which is identical to the result given by Bolotin. 
I ,  
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A s  an illustration of an inherent weakness of the Galerkin procedure 

for a harmonically vibrating Timoshenko 

when applied to the solution of differential equations in more than simply a 

mathematical sense, the equation 
beam (Reference 2) is solved for the case of clamped ends (see Fig. 2). 

x 2.w 
Figure 2. Timoshenko Beam 

The Timoshenko-beam equation can be writteq neglecting rotary-inertia effects, 

as 

where 

€1. Beam bending stiffness 
W- Lateral deflection 
DQ = Beam transverse-shear stiffness parameter 

9 = Mass density of beam 
W = Natu ra l  frequency of beam vibration 

so that all boundary conditions (in this case all geometric in nature) a r e  

satisfied. The Galerkin integral for determining the existence of the amplitude 
parameter A is 

If, indeed, A exists, the eigenvalue is 

Now, if the same problem is approached via the potential-energy 
method, the total potential of the problem includes the energy of bending, the 

energy of shearing, and the kinetic energy of vibration. Thus, 
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where Q is the shearing force on the beam cross section. The direct 
method of the calculus of variations (Rayleigh-Ritz method) requires that 

functions satis€ying the geometric boundary conditions be selected when the 
functional to be minimized is the total potential energy; thus, the degrees of 
freedom are taken as 

Actually, Q is the-shear force, but since Q / ~  = P is the shear angle, a 
direct proportion exists and Q 

Now, enfor cement of the condition 6 (v-r) = 0 with respect to both 

A and 0 yields two simultaneous equations for ensuring the existence of A 
and B . The resulting characteristic equation yields the eigenvalue 

may be used interchangeably with 8' . 

It is to be noticed that this result, which represents a minimum- 
energy solution, is different from the Galerkin solution,which represents only 

an approximate solution to a differential equation. The reason for this 
discrepancy is that the Timoshenko-beam equation is not an Euler equation. 
Interestingly enough, in  the case of simple supports, no difference exists in 
the two methods of solution; however, for clamped supports, a Galerkin solution 
yielding the same results as the mhimum-energy solution can only be achieved 
if the two Euler equations governing the problem a re  utilized. In the present 
problem, the discrepancy is serious since the Galerkin solution underestimates 

the effect of transverse shear. The problem is very serious in the case of 
sandwich beams ,where the transverse shear is extremely important. 

The foregoing pilot problems indicate that continuing results on more 
complicated problems may lead to reevaluation of the methods and results 

associated with non-conservative nonlinear problems having boundary restraints 
other than simple supports. 
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* EFFECTS - OF AERODYNAMIC NONLINEARITIES: 

Bolotin et al? considered a two -dimensional simply supported plate 

with aerodynamic loads from second-order piston theory and variable in-plane 
edge restraint. Aerodynamic damping terms were left out. They found that, 
for certain values of this edge restraint, self-sustained oscillations of the 

plate were possible for Mach numbers below the critical Mach number from 
linear theory, if the initial disturbance of the plate was large enough. Further- 
more, the disparity between the two Mach numbers increased as the magnitude 

of the initial disturbance increased. However, the values of the parameters 

used in the analysis were somewhat removed from those found in current prac- 
tice, so one might conclude that such a problem was only of academic interest. 

4 On the other hand, Stepanov studied a three-dimensional simply 

supported plate with infinite in-plane edge restraint and second-order piston- 

theory aerodynamic loads including some aerodynamic damping terms. The 
values of the parameters he used were f a r  more representative of current 

practice, and he obtained the curious result that the critical velocity of the 

plate became greater than that obtained from linear theory as  the magnitude 
of the initial disturbance increased. 

It would, therefore, appear useful to examine further the question of 

the influence of initial deformations on the critical speed. This will be accom- 

plished as part of an evaluation of the effects of aerodynamic nonlinearities by 
comparison with Dowell's solutions. The applicable equations a re  being 

programmed for the computer, and numerical results will soon be available. 
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ANNUAL REPORT: An annual report on the first year' s activities has been 
prepared and will be distributed. 

K. Karamcheti 
Principal Investigator 
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